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ABSTRACT
The application of distributed agent techniques to large-scale
problems like global logistic planning raise interesting
challenges regarding the communication and management of
information between the agents. The distributed nature of the
problem often makes for wide gaps of knowledge that need to be
bridged through an expressive yet efficient language for
expressing requirements and service results.  The Advanced
Logistics Program (ALP) has developed an infrastructure for
representing extremely large problems in a distributed manner.
The use of an expressive communication language along with
techniques for state encapsulation and decision space tradeoff
analysis have provided for efficient coordination among large
numbers of medium complexity planning agents towards solving
large, complex problems.   This article describes in detail the
language and structures developed under ALP to effect the inter-
agent communications that enable successful distributed
coordination.
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1. INTRODUCTION
There are many benefits associated with using distributed agent
techniques to model a complex dynamic system. First, of course,
one can take advantage of the efficiency of parallelism in
execution. Second, one can achieve significant modularity in
software development by breaking up a problem into explicit,
separable pieces and cleanly encapsulating those in individual
software agents. Most significantly, a complex problem that is
modeled by a series of small agents, each representing some
small localized view of a problem, can achieve significantly
better fidelity over a large monolithic model. The emergent
behavior of the society of cooperative, interoperating agents, each
with its own parochial view of a given domain problem, can be
much more complex and realistic than any attempt to model the
entire society in all its complexities.

However, there are additional challenges associated with such a
distributed agent approach. A single set of requirements and
results is now broken up into a complex chain of delegations and
negotiations. Two parties may need to solve a problem together,
but only one understands the requirements, while the other
understands the domain constraints in which those requirements
can be solved. In order for there to be an efficient distribution of

complex requirements and an efficient negotiation of solution
among agents, there must be an expressive and efficient shared
language among all agents.

DARPA’s Advanced Logistics Program (ALP) has been
addressing these challenges in its work to model the complexities
of military logistics in a distributed agent-based framework. The
challenge of the military logistics domain is daunting: there are
thousands of organizations formulating extremely complex plans
for the transportation, supply and support requirements for global
military operations. Millions of asset objects of different sorts
must be scheduled or requisitioned, each by organizations with
their own constraints of business rules, policies and most
significantly, reality.

The challenging operating paradigm of ALP is continuous
planning, execution monitoring and dynamic replanning. Each
organization must model real-world/real-time events with as
much fidelity as possible. As such, at any time the system must
be able to express and handle a commitment that was made and
must now be broken (a plane has gone into maintenance, or a
part arrived late, e.g.). Each organization must make its plans,
and continually monitor reality as it unfolds, replanning as best it
can in light of these changes.

Figure 1. ALP Execution Monitoring and Dynamic
Replanning Model: Continually reevaluate plan against
requirements, business-rules and real-time resource state.

To tackle the complexities of this domain, ALP has modeled
each organization in the logistics pipeline as an agent.  This
ranges from the front line combat units requiring logistics
support to support, supply and transportation organizations
providing that support. These agents, called clusters in ALP
terminology, interoperate with one another through a rich series
of structured interactions that allows each organization to express
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its requirements, and to receive dynamic responses in adequate
detail to respond appropriately.

The domain in which ALP works is the satisfaction of complex
logistics requirements, often by decomposing and distributing
these requirements among other organizations. For example, a
supply depot knows how much it has in stock and how long it
will take to replenish, a truck company knows how many drivers
and trucks are available to transport material and what kinds of
material they can handle. However, only the organization
generating the requirement knows what constitutes a satisfactory
plan to meet the set of requirements given the constraints and
conditions of the situation.   For example, the traveler, and not
the travel agent, knows how to manage tradeoffs between cost
and schedule constraints.  We have of necessity a knowledge gap
over which the negotiation of requirements in a distributed
environment will occur: one party knows what is desirable,
another knows what is possible.

This article describes the structures and interfaces developed in
ALP to bridge this ‘knowledge gap’. These structures have been
developed to express complex requirements and the resulting
solution space in a manner that is sufficient to allow successful
inter-agent negotiations, while supporting the real-time
requirements of dynamic replanning and execution monitoring.

2. ALP EXECUTION MODEL
The operating concept of ALP is to take requirements and
generate the best plan to satisfy these requirements relative to
currently available resources and situational conditions. The top-
level requirements are typically expressed in terms of a high-
level objectives and requirements. ALP must iteratively
transform these high-level requirements into detailed logistics
plans.

ALP models all organizations in the logistics chain as agents
called clusters. Each cluster maintains its own local sense of the
world, representing the state of the resources it controls, and the
portion of the global logistics plan that it manages and
contributes to. This cluster-internal information is called the
local PLAN of the cluster, and is not shared or visible to other
clusters other than as allowed by the cluster itself. We thus have
a notion of a distributed plan that constitutes the solution being
generated.  This plan is not in any one place, but is the composite
of all plans being generated in the local PLAN of each cluster.

Figure 2.  Sample ALP Cluster with PlugIns publishing
objects to and subscribing to objects from the Cluster PLAN.

Each cluster is imbued with particular behaviors and capabilities
through software modules called PlugIns. The aggregate
behavior of all PlugIns of a cluster makes up the expressed
behavior of that cluster. PlugIns work in the context of the local
PLAN of the cluster in a publish/subscribe model.  Each PlugIn
subscribes to particular kinds of objects of interest in the PLAN
and publishes additions, changes, and removals to the PLAN in
response to these subscriptions.

2.1 PlugIn Behaviors and the Human
Cognitive Model
While a great deal of work has been in the areas of Artificial
Intelligence and Cognitive Psychology [7], there is no definitive
way to represent human cognition in software.  While the
concept intelligent agents implies the presence of this cognitive
layer, little real work is being done on trying to achieve it.
Rather, significant emphasis has been placed on modeling the
appearance of intelligence through hand crafted control layers,
often using a subsumption [1] or hybrid subsumption-deliberative
planner approach.

While we are not explicitly attempting to achieve intelligence in
ALP agents, we have developed an underlying cognitive model to
ground the methodology of building complex agent systems.
This underlying cognitive model serves as a natural roadmap to
constructing components and assembling those components to
perform complex business processes.  Though drawing heavily
from previous work in the area of cognitive model [2], we believe
one of the major contributions to agent design comes from our
work in this area.

The cognitive model the ALP architecture employs is modeled
after the way human planners make decisions today.  It is
composed of the following basic elements, not all of which are
required for a given planning action:

1- Decomposition : Take a problem and break it into
smaller problems

2- Delegation : Take a problem and assign a resource
to handle it, which may, in turn cause further
decomposition and delegation

3- Consolidation : Taking a set of separate problems
and merging them as a single problem

4- Monitoring : Continually reassessing a solution to
make sure it is consistent with changing reality

5- Gathering : Gain more information from external
entities

6- Reporting : Report information and results to
external entities

7- Acting :  Interacting with real world entities to
implement the plan in real-time.

Each element would be manifested in a system component called
a PlugIn.  This component performs the function of that element
by employing specific domain information and rules,
encapsulated in the component, through a structured interface
appropriate for that cognitive element.
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The underlying ALP methodology expects problems to be
analyzed and represented in this fashion. In fact, ALP PlugIns
typically fall into one of the template patterns above:

1- Expander (Decomposition): A PlugIn that takes a
problem and decomposes it into sub-problems.

2- Allocator (Delegation): A PlugIn that takes a
problem and allocates it to a resource. This
resource may be a physical asset which can satisfy
the problem (e.g. a plane can satisfy a mission
requirement), or another organization or cluster
which will continue the cycle of expansion and
allocation

3- Aggregator (Consolidation): A PlugIn that takes a
series of separate problems, recognizes their
commonality, and merges them into a single
subsuming problem.

4- Assessor (Monitoring): A PlugIn that continually
monitors the state of previous allocations,
expansions and aggregations produced in the
Cluster’s PLAN for consistency with the changing
state of the assets and resources managed and
represented in the PLAN, taking corrective action
as necessary

5- Data (Gathering): A PlugIn to read information
from external data sources (sensors, databases,
human interfaces) to populate the PLAN with
detailed real-time information about relevant real-
world entities

6- UI (Report): A PlugIn that allows for external user
interfaces to receive detailed information (either
on a pull or push basis) on the internal state of a
cluster’s PLAN.

7- Execution (Acting): A PlugIn that executes the
plan in real time by interacting and making
commitments with real-world entities.

When an agent receives a request to perform some service, its
PlugIns will typically invoke a logical business process of the
following general form:

Step 1: Receive a new task

Step 2: Expand task into lower level subtasks

Step 3: Allocate each lower level task to resources. Leaf subtasks
are allocated to operations, non-leaf subtasks are allocated to
other agents

Step 4: Periodically assess progress toward achieving main task
via execution status of subtasks

Step 5: When problems and inconsistencies are detected,
reinvoke step 1 for plan repair

At any point in this general process, decision support information
can be retrieved through the data PlugIns or provided to the users
through the UI.  Also, in some cases it is appropriate to aggregate
activities, merging multiple sub-tasks into larger tasks - the exact
opposite of the expansion function.  This is done by the
aggregators and is useful for activities like packaging units in a
box or combining people into an airplane flight passenger list.

Since each of the PlugIns is required to be stateless, the critical
results of each processing step are maintained in the shared ALP
Plan.  The next section presents the unique features of these
elements design and briefly reviews how that plan is maintained
across multiple agents.

Figure 3.  Sample ALP Cluster consisting of composition of
multiple PlugIns of different standard cognitive patterns.

2.2 Fundamental PLAN Structures
The fundamental objects contained in the ALP PLAN are assets
and tasks, which one can think of as the nouns and verbs of the
planning operations. Assets come in two varieties:
PhysicalAssets, which represent the real-time state of a real-
world physical entity, and OrganizationAssets, which represent
proxies to another agent in the society within the PLAN of an
agent. Tasks represent a requirement to perform or plan some
operation, for example, to transport a set of materials between
two points, or to order spare parts, or to fix a flat tire.

ALP seeks to allocate all tasks to assets. By allocating a task to a
PhysicalAsset, the task is considered completely dispositioned:
the requirement has been satisfied. By allocating a task to an
OrganizationAsset, the task is handed off to the associated
underlying cluster for further operations. Tasks may be expanded
into sub-tasks or aggregated with other tasks into a single task
from which point the cycle of allocation continues.

The ALP PLAN contains structures called PlanElements, which
represent the disposition of a task, by ALP. PlanElements can be
of various forms:

- Allocations, representing that a task was allocated to
an asset (Physical or Organization)

-  Expansions, representing that a task was decomposed
into a given set of subtasks

- Aggregations, representing that a task was merged
with other tasks to form a given unified task.

All of the information of the chain of events involved in the
attempt to satisfy a given task is captured in the ALP PLAN. Of
course, the PLAN of a given cluster only contains the information
about that cluster’s association with that task. As with any
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question in ALP, the whole picture is contained in the union of
all PLANs across all ALP clusters in an interoperating society.
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Figure 4. Sample ALP PLAN Element Structure,
representing expansion of task to subtasks, and allocation of
tasks to physical and organizational assets

3.  ALP Inter-Clusters Dialog
The entirety of the operations of an ALP society of clusters can
be described as the aggregate behavior of all pair-wise
interactions among clusters negotiating the disposition of a
particular task. The allocation of a task by one cluster to another
is the fundamental operation of delegation, and requires a
capability to express requirements and preferences of various
sorts by the ‘tasking’ cluster, and the capability to pass back the
results determined solution space from the ‘tasked’ cluster.

It is important to keep in mind that each cluster is, at all times,
acting in multiple roles in these dialogs. It may be tasking one
cluster in an attempt to satisfy the requirements and requests that
have been made of it; it may be a consumer of one service as part
of the process of providing services to another.

3.1 Expressing Requirements and Preferences

The task is the fundamental structure of request portion of the
agent negotiation dialog.  The structure of the task is a sentence
in the language of discourse for ALP agents.  The operational
parameters of a task are contained as essential immutable
contents of the task itself.   In ALP, a task consists of the
following data:

- Verb : A mnemonic verb name indicating the type of
service requested (e.g. TRANSPORT, SUPPLY,
MANAGE, SUPPORT)

- PrepositionalPhrases : A set of prepositional phrases,
associating mnemonic preposition (e.g. FROM, TO,

WITH, FOR, USING, CONTAINING) with a particular
object from the sending cluster’s PLAN (e.g. FROM
<Source Location>, TO <Destination Location>,
USING <Particular Policy Guidelines>)

In addition to these strict expressions of requirements, a tasking
organization can specify a series of preferences. A preference
consists of the following data:

- Aspect : A dimension of measurement about which a
preference is being expressed. ALP contains a
predefined set of these, including START_TIME,
END_TIME, COST, QUANTITY, READINESS, and
CUSTOMER_SATISFACTION.

- ScoringFunction : A mapping from the aspect
measurement space into a dimensionless score space.
This function allows for specification of best and worst
points in the space of solutions in a given aspect
dimension, preferred values, and, by convention,
unacceptable values.

- Weight :  A scalar allowing for inter-preference
comparison and aggregating scores from individual
preferences

The intended semantics of a preference is that the receiving
cluster, given a series of alternative dispositions for a given task,
should use the one ‘preferred’ (as indicated by the preferences)
by the requesting cluster. The cluster should determine through
the ScoringFunction, the score for each alternative solution in
that aspect space and recommend the solution with the best
score. Where there are multiple preferences provided, the
servicing cluster is expected to select the course of action that
minimizes the weighted sum of all scores over all aspects.

Note that the preferences to not require, nor do they enable, the
servicing cluster to find a solution that is optimal in the eyes of
the customer. The service provider only has knowledge of its
own business rules to determine what is possible: the preferences
merely direct the cluster to select the best alternative.

Figure 5. Sample ALP Scoring Functions used in
Preferences.
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3.2 Expressing Results
When a cluster has received a task and has dispositioned that
task (allocated it to some resource), it must report these results
back to the cluster that tasked it (the customer). The structure
provided in ALP for this report is through an AllocationResult.
The AllocationResult contains the details of the disposition of the
task in each of the aspect dimensions for which preferences were
expressed on the original task.

There are times that the results call for a phased expression of
one aspect with respect to another. For example, a task may
request receiving 20 objects by June 20 (QUANTITY required at
20, END_TIME required by June 20). In fact, fulfilling this
request may have 10 objects arriving by June 10, 5 by June 15
and 5 by June 20. The AllocationResult contains summary
information (QUANTITY = 20, END_TIME  = June 20), as well
as detailed phased information ([QUANTITY = 10, END_TIME
= June 10], [QUANTITY = 5, END_TIME  = June 15],
[QUANTITY = 5, END_TIME = June 20]).

3.3 Dynamic Negotiation
Any PlanElement contains a pair of AllocationResults, labeled
‘reported’ and ‘estimated’. The ‘reported’ AllocationResult
represents the information received from ‘below’ (that is,
reported from PhysicalAssets or OrganizationAssets to which the
tasks have been allocated). The ‘estimated’ AllocationResult
represents the information reported from the cluster ‘upwards’
(that is, to the cluster that allocated the task to you).  This forms
a natural reporting chain for providing the status and results
through a complex processing path.

There are several points of note in this reporting chain. First, the
‘reported’ AllocationResult represents the abstraction of the state
of a given task based, potentially, on synthesizing details from
lower-level processing. The ‘reported’ AllocationResult
represents the particular information and granularity that the
reporting cluster chooses to report to its customer. In addition,
the ‘estimated’ AllocationResult received from the service
provider represents the best estimation of the ability to satisfy the
request at any point in time and is subject to change over time as
higher fidelity planning processes have time to complete.  This
last notion is especially important in that most planning
processes are multi-pass, reporting 'quick-and-dirty' estimates
initially and refining those estimates over time.  This not only
increases overall performance, but also allows a fast negotiation
process to occur in the absence of complete plans.  Through
machine learning, these estimates can get grow increasingly
accurate for routine operations.

The ALP infrastructure provides an automated mechanism to
copy ‘estimated’ results from below (the ‘tasked’ cluster) to the
‘reported’ results above (the ‘tasking’ cluster). Whenever new
significant information about the state of an allocation is
available, it can and should be entered into the ‘estimated’
result. This filling in of the ‘estimated’ is the responsibility of
the clusters and their PlugIns themselves to determine what to
report upwards, what is a significant change and what is an

unnecessary perturbation.

Figure 6. ALP copies ‘reported’ AllocationResult to
‘estimated’ AllocationResult of previous Allocation Plan
Element

If we consider the full downward flowing chain of expansion and
allocation that decomposes and dispositions a task, then, we see
another backward flowing chain of allocation results flowing
back up though the allocation results of the plan elements, from
‘reported’ to ‘estimated’. Clusters should subscribe to the
changes reported from below, and determine how and whether to
report these changes up the chain.

There are some automated mechanisms provided by ALP to
support this backflow. On any Expansion, there is an
‘aggregation’ function that takes the ‘estimated’ results on all
subtasks, and merges them into a ‘reported’ result on the
Expansion itself. Similarly, on any Aggregation, there is a
‘distribution’ function that takes the ‘estimated’ result on the
supertask and breaks them into ‘reported’ results on all the input
tasks.

3.4 Assessment
The ordinary context of ‘reported’ estimates is that of reports
coming in from another cluster about the results of that clusters
allocation of the original task request. However, any cluster that
has allocated a task should be monitoring the ‘reported’ results
and reacting accordingly. This behavior allows for ALP to
implement a powerful yet efficient assessment feature from the
same infrastructure as supports the inter-cluster dialogs.  There
are PlugIns whose role it is to monitor the internal consistency of
PlanElements with respect to the state of asset resources. If some
change happens in reality to a modeled resource, the state of that
asset should change within the Cluster. The Assessor PlugIn
should then question the validity of Allocations made against that
asset. It doesn’t have the ‘smarts’ at hand to understand whether
this allocation is still valid, but it does have the mechanism to
force this re-evaluation by the Allocator itself.  By filling in the
‘reported’ result on the allocation of a task to an asset, the
Assessor is triggering that it is reporting that this allocation is in
question and should be re-evaluated. It is up to the Allocator to
re-evaluate this allocation just as it would had it received this
information from another cluster.

In other words, allocation is an act that needs continual
monitoring; delegation to others can be unreliable, and so can
relying on reality happening as planned. Either can produce
results counter to objectives of the plan, and any well-written
Allocation algorithm must anticipate and react to such
contingencies.

3.5 Future Directions and Summary
There are many areas that the ALP is continuing to investigate
alternate solutions in order to make its infrastructure more
robust, efficient and expressive. A few issues under
consideration for future ALP development may provide
additional power in the expressiveness or efficiency of the
negotiation process.
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- Auxiliary Queries: The capacity to augment the
Allocation/AllocationResult dialog with information
about additional information about the results of an
allocation that is not tied to a preference, nor
quantifiable in an aspect. For example, I want to know
what route you’ll be taking, or what port you’ll be
using, or the name of the ship’s captain, even if I have
no preference in the matter.

- Dynamic Aspects: The capacity to manage arbitrary
new aspects that can be negotiated between two
clusters without prior knowledge of the aspect in the
core aspect ontology of the ALP infrastructure.

- Multiple Concurrent Independent Scenarios: The
capacity to handle parallel ‘what-if’ scenarios on top of
the base ‘reality’ scenario and have the family of
realities negotiated in a single dialog.

- Traceability: The enhancement of the dialog between
clusters to contain ‘intent’ and ‘expectation’ semantics.
That is, a customer can provide details to provide the
context of why the request is being made, so the
supplier can identify reasonable alternative paths.
Further, the supplier can respond with accountability
tracing, defining why a given result (success or failure)
was given to a given request.

- Confidence: The enhancement of the infrastructure to
specify levels of fidelity requested and provided for a
given transaction. In this way, clusters can select
different operating modes depending on operational
requirements and available resources.

The ALP architecture is a general-purpose agent architecture for
the construction of large-scale distributed agent systems.  The
development of logistics unique PlugIns has afforded the
construction of a large military logistics command and control
prototype for experimentation and demonstration.  The
architecture itself, without the sensitive military specific PlugIns,
is available under OpenSource at: www.cougaar.org.   In the
OpenSource realm, ALP uses the name COUGAAR (Cognitive
Agent Architecture) to emphasize the modeling of the human

cognitive process inherent in the decomposition of organization
processes into component functions as PlugIns.

The Advanced Logistics Program continues to enhance the depth
and breadth of its model of various aspects of military logistics.
In parallel with and in support of this effort, ALP continues to
refine and extend the infrastructure for cluster interoperability to
allow for more successful interoperations between clusters.
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